Chips and Achievements

Dual-Mode TC/CC Decoder for IDD Receiver

Dual-Mode TC/CC Decoder for IDD Receiver

 Global state metrics transfers between 8 parallel MAP kernels.

Proposed Decoder Architecture

The proposed parallel dual-mode MAP decoding architecture composed of 8 MAP kernels.

Decode 8 blocks of 8-state TC or 1 block of 64-state CC.

Experimental Results

The overall VLSI implementation results.

Design	Core Area (mm²)	Global state metrics routing length (µm)
DGR	0.52	166721.1 (100%)
MGR	0.52	120465.8 <mark>(72%)</mark>

Dual-Mode TC/CC Decoder for IDD Receiver

• 第十一屆全國電子設計創意競賽 大專組電子類佳作

- ・會議: ITC-CSCC 2017 (Best Paper Award)
- •期刊: IEEE TCAS-I 2019

Post-layout simulation results

Technology	TSMC 40nm CMOS 1P10M	
Supply Voltage	0.9 V	
Core Area	2.88 mm ²	
MAX. Frequency	364 MHz	
Dowor	257 mW	
Power	240 mW	
Throughput	222 Mbps (TC)	
moughput	364 Mbps (CC)	

Key Designer: Ching-Wen Hsieh (M.S. 2018)

Window-Stopped Parallel Turbo decoder for LTE Rate Matching

Stopping Criteria

- Stopping criteria extending for turbo decoding
 - The stopping criteria have great performance on stopping rate with early termination.

Proposed Decoder Architecture

Parallel-16 turbo decoder architecture

SISO : soft in soft out HD : hard decision

Power Dissipation for RM system

- The power dissipation of ET&WS
 - P_{ET} : Power of ET-MSDR estimation
 - P_{ET-WS} : P_{ET} X (1- PRR_{WS})

VSPS Lab. VLSI Signal Processing Systems Laboratory

Window-Stopped Parallel Turbo Decoder for LTE Rate Matching

•第十屆全國電子設計創意競賽大專組 電子類佳作

a ta ta ta ta	K K K	8 8	
			<u>x</u>
		1000	8
			X 🔛
			2
			¥.
			ê
		× 🚟	
MM 3		<u></u>	
88888888			
			<u>.</u>
		0000	X ·
		1001	z N
		0000	
		<u> </u>	8
			<u>X</u>
		10000	<u>×</u>
			÷
		10000	
8	8 H H	G	P -

- Conf.: ITC-CSCC 2013
- Jnl.: IET COM 2018
- R.O.C. Patents I531171

Technology	TSMC 90nm CMOS	
Core voltage	1.0V	
Core area	18.49 mm ²	
Radix	Radix-2	
Frequency	357 MHz	
Power	614 mW	
Throughput @	427 Mbps	
6 iteration		

Post-layout simulation results

Key Designer: Shu-Wei Guo (M.S. 2014)

Energy-efficient LDPC Codec Design Using Cost-effective Early Termination Scheme

Proposed Early Termination (2/6)

Based on the LS criterion, the layer stopping number termination (LSNT) scheme is proposed as an ET scheme.

Codec Cells Area Report

NAND Flash LDPC Codec			
LDPC Encoder		LDPC Decoder	
Module	Cell Area (µm²)	Module	Cell Area (µm²)
XOR_group1	426	A posteriori Memory	1,671,204
XOR_group2	335	Extrinsic Memory	883,332
Others	251,918	PMP	239,055
Total encoder	(5.13%) 252,679	СМР	457,157
		VMP	245,621
		LS	(1.690%) 73,564
		LSNT	(0.028%) 1,205
		Hard Decision	1,705
		Other (FSM, MUX, Reg)	779,256
		Total decoder	(100%) 4,352,099
DFT cells (test coverage 99.91%) (6.469			(6.46%) 317,988
Total codec			(100%) 4,922,771

Codec Power Report

LDPC Decoder (post-DFT)		
Module	Power (mW)	
A posteriori Memory	206.000	
Extrinsic Memory	103.000	
PMP	22.500	29%
CMP	45.700	43% Decoder
VMP	20.600	Power
LS	(0.530%) 3.740	15%
LSNT	(0.014%) 0.097	3%6%3%
Hard Decision	0.020	
Other (FSM, MUX, Reg)	304.343	
Total	(100%) 706.000	

Energy Consumption

The energy consumption report during the decoding.

> Maximum iteration: 8 times

	Energy Consumption	Ratio
Without LS and ET for 8 iteration	9.52 μJ	100 %
With LS for 8 iteration (without ET)	6.31 μJ	66.3 %
With LS and LSNT	4.32 μJ	45.4 %

Energy-efficient LDPC Codec for Non-Volatile Memories

第十二屆全國電	電子設計創	间意競賽大	て專組
電子類佳作			

AM	
2.75 2.75.7	
0401040	
-	
XXX COLOR	
THE REPORT OF	
900 (mone	
<u> 17</u> <u>- 1</u>	
100.00 (00.00) 4000 (00.00)	
THE REAL PROPERTY OF	1
2.74 2.04.7	1262

• Conf.: IEEE GCCE 2014 • Jnl.: IET CDT 2019

Post-layout simulation results

Cell Library	TSMC 90nm Proces s	
Work Voltage	1.0V/3.3V	
Applications	NAND Flash ECC	
Codeword Size	8,960	
Code Rate	0.91	
Core Size	9.86 mm ²	
Work Frequency	278 MHz	
Power Consumption	968 mW	
Throughput for Encoder	4448 Mbps	
Throughput for Decoder	4313 Mbps	

Key Designer: Yuan-Syun Wu (M.S. 2015)

Multi-Mode SISO Kernel Using Unified Encoder Embedded Trellis Router

Multi-Mode SISO Kernel with EETR

Able to decode CC, SB/DBTC and LDPC with decoding latency at 8 cycles.

BMU: Branch Metric Unit BMC: Branch Metric Cache MFRP: Multi Function Recursive Processing MFACU: Multi Function a posteriori Calculation Unit SMC: State Metric Cache ECU: Extrinsic Calculator Unit EETR: Encoder Embedded Trellis Router

Double Binary Radix-4 EETR

To generate the path, extend the application range as well, EETR is extended into both radix-4 and DBTCs.

For a DB RSC encoder: $\begin{cases}
X_A = P \oplus (g_{01} \cdot S_0) \oplus (g_{02} \cdot S_1) \oplus \cdots \oplus (g_{0M} \cdot S_{M-1}), \\
X_{Pi} = X_B \oplus (g_{i0} \cdot P) \oplus (g_{i1} \cdot S_0) \oplus \cdots \oplus (g_{iM} \cdot S_{M-1}).
\end{cases}$

For SBTCs:

$$\begin{cases} X_{S,0} = P_1 \oplus (g_{01} \cdot S_0) \oplus (g_{02} \cdot S_1) \oplus (g_{03} \cdot S_2), \\ X_{S,1} = P_0 \oplus (g_{01} \cdot P_1) \oplus (g_{02} \cdot S_0) \oplus (g_{03} \cdot S_1), \\ X_{Y,0} = (g_{10} \cdot P_1) \oplus (g_{11} \cdot S_0) \oplus (g_{12} \cdot S_1) \oplus (g_{13} \cdot S_2), \\ X_{Y,1} = (g_{10} \cdot P_0) \oplus (g_{11} \cdot P_{k-1}) \oplus (g_{12} \cdot S_0) \oplus (g_{13} \cdot S_1). \end{cases}$$

$$\begin{split} X_A &= P_1 \oplus (g_{01} \cdot S_0) \oplus (g_{02} \cdot S_1) \oplus (g_{03} \cdot S_2), \\ X_B &= P_0, \\ X_{P1} &= P_0 \oplus (g_{10} \cdot P_1) \oplus (g_{11} \cdot S_0) \oplus (g_{12} \cdot S_1) \oplus (g_{13} \cdot S_2), \\ X_{P2} &= P_0 \oplus (g_{20} \cdot P_{10}) \oplus (g_{21} \cdot S_0) \oplus (g_{22} \cdot S_1) \oplus (g_{23} \cdot S_2). \end{split}$$

Double Binary Radix-4 EETR (4/4)

EETR for TCs and CC in WiMAX, LTE.

VSPS Lab. VLSI Signal Processing Systems Laboratory

Experimental Results

 Synthesis results with TSMC 90 nm technology @240 MHz

Module	Area (Occupation)	
BMU	9384.43	13.1%
Recursive - α + β + β_d	53506.02	74.5%
ACU	29168.79	40.6%
ECU	2824.51	1.1%
BMC	53583.06	20.9%
SMC	27532.6	10.8%
Controller + Path Mux. + Pipeline Reg.	71833.91	28.1%
EETR	8162.31	3.2%
Overall	255995.63	100.0%

Multi-Mode SISO Kernel Using UEETR (1/2)

• 第十屆全國電子設計創意競賽 大專組電子類佳作

- Jnl.: IEICE EXEL 2017
- R.O.C. Patent I599182
- U.S. Patent 9,787,331 B1

Technology	TSMC 90nm CMOS		
Core Voltage		1.0V	
Core Size		0.48 mm ²	
Radix-r		Radix-4	
Code Type	SB CC	SB/DB TC	LDPC
Decoding Strategy	SW	SW	TPMP
Decoding Algorithm	EML- MAP	EML-MAP	FBA
MAX. Frequency	166.7 MHz		
Throughput (@8 iter.)	333 Mbps	333 Mbps	800 Mbps

Post-layout simulation results

Key Designer: Tsung-Ju Hsieh (M.S. 2016)

Operation-Reduced LDPC Decoder Using a Check Node Stopping Scheme

Check Node Stopping Criterion

Check node units and memory operate state with node stopping criterion.

VLSI Design of LDPC Decoder

The proposed LDPC decoder consists of check node units, variable node units, a variable node memory, a check node memory, channel value memory, shift network, and parity check matrix *H* information ROM.

CNU Design (1/2)

- The CNS checks whether the absolute values of the check node message larger than the threshold or not.
- The memory store which enable address of the

2019/8/28

CNU Design (2/2)

- The CNS checks whether the absolute values of the check node message larger than the threshold.
- When the absolute values of check node message are larger than threshold, CNS sends RM and RM2 to replace the Min and Min2.

/LSI Signal Processing Systems Laboratory

Experimental Results

The power comparison between non-convergent node and convergent node.

	Original LDPC Decoder	Proposed LDPC Decoder			
	(mW)	Non-Convergent Node (mW) ^{&}	Convergent Node (mW) ^{&}		
Variable Node Operation	8.3	8.3	8.3		
Check Node Operation	33.1	33.1	28.1		
Variable Node Memory Access	9.4	9.4	9.4		
Check Node Memory Access	10.2	10.2	8.6		
Shift network	43.7	43.7	43.7		
Channel Memory Access	4.7	4.7	4.7		
CNS	N/A	1.1	1.1		
Total	109.4 (100%)	110.5 (101%)	104.0 (95%)		

& at Eb/N0 = 3.6, Threshold = 13

Operation-Reduced LDPC Decoder for WiMAX Standard

• 第十屆全國電子設計創意競賽 大專組電子類佳作

Conf.: IEEE ISCE 2014, ITC-CSCC 2013
 Jnl.: JCSC 2017

Cell Library	TSMC 90 nm CMOS
Work Voltage	1.0V/3.3V
Gate Count	672K
Code Size	2.1mm × 2.1mm
Die Size	2.7mm × 2.7mm
Operating Frequency	100MHz
Maximum Throughput Rate @8 iter.	226.8 Mbps
Power Consumption	106.2mW

Post-layout simulation results

Layer-Stopped LDPC Decoder for DSRC Systems

Layer-Stopped LDPC Decoder for DSRC Systems

Parallel Layered Stopping

Assuming APP2 \geq threshold in Parallel Layer kernel 1 in current iteration, we will stop it in the following iterations.

Layer-Stopped LDPC Decoder for DSRC Systems

- Conf.: ITC-CSCC 2013
- Jnl.: IET EL 2013
- R.O.C. Patent I504162
- U.S. Patent 9,344,116 B2

Post-layout simulation results

Cell Library	TSMC 0.18 μm
Work Voltage	1.8V
Gate Count	843K
Core Size	2.9mm×2.9mm
Die Size	3.3mm×3.3mm
Operating Frequency	250 MHz
Power Consumption (Block length = 2048) (Iteration = 16)	212mW@2.5dB (w/o PLS) 162mW@2.5dB (w/ PLS)

VSP VLSI Signal

Key Designer: Shin-An Chou (M.S. 2012) & Tzu-Hsuan Huang (M.S. 2012)

Multi-mode Radix-4 Turbo/LDPC Decoding Kernel

Multi-mode Radix-4 Turbo/LDPC Decoding Kernel

Combination of Radix-4 MAP and FBA

Radix-4 MAP for DB/SBTC

Radix-4 FBA for LDPC

- Proposed combination of radix-4 MAP and radix-4 FBA.
- The MAP equations have similar computations to FBA equations
 - They have many commonalities favorable for implantation.

Multi-mode Radix-4 Turbo/LDPC Decoding Kernel

• 期刊: IEEE TVLSI 2015 Post-layout simulation results

・會議: ITC-CSCC 2012

Technology	TSMC 90 CMOS		
	T: DB/SB EML-MAP		
Decoding Algorithm	L: Radix-4 FBA		
Deceding Strategy	<i>T:</i> Hybrid Window		
Decoding Strategy	L: Two-Phase		
Supply Voltage	1.0 V		
MAX. Frequency	167 MHz		
Core Size	$0.67 \times 0.67 \text{ mm}^2$		
Thursday Deter	<i>T:</i> 333 Mbps		
Inroughput Rates	<i>L:</i> 800 Mbps		
Dower	<i>T:</i> 169.8 mW		
Power	<i>L:</i> 36.1 mW		

Key Designer: Chih-Shiang Yu (M.S. 2013)

Window-Based Stopping Turbo Decoder for WiMAX Standard

Window-Based Stopping Turbo Decoder for WiMAX Standard

The block diagram of proposed CTC decoder
 The blocks with dashed line are for implementation overhead.

Power Evaluation of Proposed CTC Decoder

The power dissipation of proposed CTC decoder (including the power dissipation of external memory).

Above E_b/N₀ 0.8 dB
 About 14%~41% power reduction compared with CTC decoder w/o stopping rules.

About 6%~9% power reduction compared with CTC decoder w/ ET.

Window-Based Stopping Turbo Decoder for WiMAX Standard

- Conf.: ITC-CSCC 2012, IEEE APC-CAS 2012
- Jnl.: IEEE Commun. Lett. 2013
- R.O.C. Patents I531171

Post-layout simulation results

Technology	TSMC 90 nm CMOS
Decoding Algorithm	EML-MAP
Decoding Type	Radix-4 DB
Window Type	SW
Supply Voltage	1.0 V/3.3 V
Max. Frequency	250 MHz
Core Size	$0.83 imes 0.83 \text{ mm}^2$
Max. Throughput Rates @ 8 iter.	30.2 Mbps
Maximum Power	58.1 mW

Key Designer: Chih-Chia Wei (M.S. 2012)

Prof. C.-H. Lin's Previous Works

35-Mode LTE/WiMAX CTC Decoder

		Powe	er Ri	ng	
+	<u>+</u>		c_+		
+	(+				
+	[+ [+		(+) (†)		+
+	 +		+ +	-+	+
+	 +		+ +		++
+	 +				

- ・會議: ISIC 2012
- •期刊: JSPS 2013
- •2010國家晶片系統設計中心晶片 製作優良設計獎
- 第九屆旺宏金矽獎-設計組 銅獎

Measurement results

Technology	UMC 90nm 1P9M
Supply Voltage	1.1 V/4.5 V
Core Size	1.84 x 1.83 mm ² (3.38 mm ²)
Decoding Algorithm	EML-MAP
Max. Frequency	152 MHz
Throughput Rates	186.1 Mbps (LTE, <i>N</i> = 6144)
@5 Iterations	178.4 Mbps (WiMAX , <i>N</i> = 4800)
Power	148.1 mW (LTE, <i>N</i> = 6144)

2PW-1HW MAP Processor Chip

- 會議: SiPS 2008
- •期刊: TVLSI 2011
- 第八屆旺宏金矽獎-設計組 優勝

Post-layout simulation results

Decoding AlgorithmEML-MAPDecoding TypeRadix-4 Dual-mode SB/DBWindow TypePW, HWSupply Voltage1.2 V/3.3 VMAX. Frequency125 MHzCore Size1.13 × 1.13 mm²Throughput Rates500 Mbps (2PW MAPs)Power97.83 mW (2PW MAPs)74.95 mW (1HW MAP)	Technology	TSMC 0.13 μm 1P8M CMOS		
Decoding TypeRadix-4 Dual-mode SB/DBWindow TypePW, HWSupply Voltage1.2 V/3.3 VMAX. Frequency125 MHzCore Size1.13 × 1.13 mm²Throughput Rates500 Mbps (2PW MAPs)Power97.83 mW (2PW MAPs)74.95 mW (1HW MAP)	Decoding Algorithm	EML-MAP		
Window TypePW, HWSupply Voltage1.2 V/3.3 VMAX. Frequency125 MHzCore Size1.13 × 1.13 mm²Throughput Rates500 Mbps (2PW MAPs)Power97.83 mW (2PW MAPs)74.95 mW (1HW MAP)	Decoding Type	Radix-4 Dual-mode SB/DB		
Supply Voltage1.2 V/3.3 VMAX. Frequency125 MHzCore Size1.13 × 1.13 mm²Throughput Rates500 Mbps (2PW MAPs)Power97.83 mW (2PW MAPs)74.95 mW (1HW MAP)	Window Type	PW, HW		
MAX. Frequency125 MHzCore Size1.13 × 1.13 mm²Throughput Rates500 Mbps (2PW MAPs)250 Mbps (1HW MAP)97.83 mW (2PW MAPs)74.95 mW (1HW MAP)	Supply Voltage	1.2 V/3.3 V		
Core Size $1.13 \times 1.13 \text{ mm}^2$ Throughput Rates500 Mbps (2PW MAPs)250 Mbps (1HW MAP)97.83 mW (2PW MAPs)74.95 mW (1HW MAP)	MAX. Frequency	125 MHz		
Throughput Rates500 Mbps (2PW MAPs)250 Mbps (1HW MAP)97.83 mW (2PW MAPs)74.95 mW (1HW MAP)	Core Size	$1.13 \times 1.13 \text{ mm}^2$		
Power250 Mbps (1HW MAP)97.83 mW (2PW MAPs)74.95 mW (1HW MAP)	Throughput Dotoo	500 Mbps (2PW MAPs)		
Power 97.83 mW (2PW MAPs) 74.95 mW (1HW MAP)	Throughput Rates	250 Mbps (1HW MAP)		
74.95 mW (1HW MAP)	Power	97.83 mW (2PW MAPs)		
	rowei	74.95 mW (1HW MAP)		

12-Mode WiMAX CTC Decoder

- 會議: ISCAS 2008, VLSI-DAT 2008
- •期刊: TCAS-I 2009

Post-layout simulation results

Technology	TSMC 0.13µm 1P8M CMOS		
Supply Voltage	1.2 V/3.3 V		
Decoding Algorithm	EML-MAP		
Max. Frequency	100 MHz		
Core Size	2.58 x 2.58 mm ²		
Max. Power	197.3 mW		
Max. Throughput rate @4 Iterations	115.4 Mbps		

Triple-Mode MAP/VA IP Design

PM	1M EE		EETR1	РММ		
GAM	VIA1	RUF		BM/ GAMMA0	and the second second	
PN	1M		мд	РММ		

- ・會議: A-SSCC 2005
- •期刊: TVLS-I 2009
- 第五屆旺宏金矽獎-設計組 最佳創意獎

Measurement results

Technology	TSMC 0.18um
Logic Gate	57.7K
Supply Voltage	1.8V
MAX. Frequency	100MHz
Power	320mW @100MHz
Die Size	2.86 x 2.86mm ²
Single VA	3.12M bps
Single MAP	4.17M bps @6lt.
Concurrent VA/MAP	1.56M bps(VA) 4.17M bps @6lt.(MAP)

